Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the cortico-nigral circuits.
نویسندگان
چکیده
The prelimbic/medial orbital areas (PL/MO) of the rat prefrontal cortex are connected to substantia nigra pars reticulata (SNR) through three main circuits: a direct nucleus accumbens (NAcc)-SNR pathway, an indirect NAcc-SNR pathway involving the ventral pallidum (VP) and the subthalamic nucleus (STN), and a disynaptic cortico-STN-SNR pathway. The present study was undertaken to characterize the effect of PL/MO stimulation on SNR cells and to determine the contribution of these different pathways. The major pattern of responses observed in the SNR was an inhibition preceded by an early excitation and followed or not by a late excitation. The inhibition resulted from the activation of the direct NAcc-SNR pathway because it disappeared after acute blockade of the glutamatergic cortico-striatal transmission by CNQX application into the NAcc. The late excitation resulted from the activation of the indirect NAcc-VP-STN-SNR pathway via a disinhibition of the STN because it disappeared after either CNQX application into the NAcc or blockade of the GABAergic striato-pallidal transmission by bicuculline application into the VP. The early excitation, which was markedly decreased after blockade of the cortico-STN transmission by CNQX application into the STN, resulted from the activation of the disynaptic cortico-STN-SNR pathway. Finally, the blockade of the cortico-STN-VP circuit by CNQX application into STN or VP modified the influence of the trans-striatal circuits on SNR cells. This study suggests that, in the prefrontal cortex-basal ganglia circuits, the trans-subthalamic pathways, by their excitatory effects, participate in the shaping of the inhibitory influence of the direct striato-nigral pathway on SNR neurons.
منابع مشابه
Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat.
Population activity in cortico-basal ganglia circuits is synchronized at different frequencies according to brain state. However, the structures that are likely to drive the synchronization of activity in these circuits remain unclear. Furthermore, it is not known whether the direction of transmission of activity is fixed or dependent on brain state. We have used the directed transfer function ...
متن کاملMorphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L
Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...
متن کاملCan ovariectomy and learning affect prefrontal cortex GABAAα1 receptor distribution in passive avoidance model in rats?
Introduction: The interaction between steroid hormones and neurotransmitters such as GABA has been proved. The regulation of muscimol binding to high-affinity GABAA receptors by estradiol and progesterone has been studied within distinct brain regions using in vitro quantitative autoradiography. There are few studies about the mechanism of the effect of steroid hormones on behaviors such as ...
متن کاملA Connectomic Analysis of the Human Basal Ganglia Network
The current model of basal ganglia circuits has been introduced almost two decades ago and has settled the basis for our understanding of basal ganglia physiology and movement disorders. Although many questions are yet to be answered, several efforts have been recently made to shed new light on basal ganglia function. The traditional concept of "direct" and "indirect" pathways, obtained from ax...
متن کاملEffects of systemic and intra-prefrontal cortex administrations of ethanol on spatial working memory in male rats
Introduction: Ethanol can induce a wide spectrum of neurophysiological effects via interaction with multiple neurotransmitter systems and disruption of the balances between inhibitory and excitatory neurotransmitters. Prefrontal cortex is involved in cognitive process including working memory and is sensitive to ethanol. Present study investigates the effects of intraperitoneal (i.p.) admini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 11 شماره
صفحات -
تاریخ انتشار 1999